Preparation of magnetic antibacterial composite beads Fe3O4/alginate/Ag

Nguyễn Tuấn Dung


In recent years, the synthesis of magnetic polymer beads has attractive much attention from many technological fields such as biomedical and environmental. In addition of stabilizing effect for magnetic particles core, the polymer shells can also be further functionalized, thus enlarging the spectrum of possible applications of magnetite nanoparticles. In this study, the novel magnetic composite beads Fe3O4/alginate/Ag were synthesized and characterized for point-of-use water disinfection. Magnetite nanoparticles were prepared from waste spent pickling liquors and then were encapsulated by natural alginate to form the spherical beads of the size about 1-2 mm. Silver nanoparticles were loaded on the beads with the large content (24.62 wt.%). The as-prepared beads have a high saturation magnetization value, Ms = 59 emu/g, and very good antibacterial activity against both gram (-) and gram (+) bacteria. With the concentration 35 μg mL-1 the magnetic beads can kill 100% Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, whereas this value found 70 μg mL-1 for Lactobacillus fermentum, 105 μg mL-1 for Salmonella enterica, and 140 μg mL-1 for Bacillus subtilis.


magnetic antibacterial beads, sodium alginate, silver nanoparticles, water disinfection

Full Text:



J. R. McCarthy, R. Weissleder - Multifunctional magnetic nanoparticles for targeted imaging and therapy, Adv. Drug. Deliv. Rev. 60 (2008) 1241–1251.

L. Borlido, A. M. Azevedo, A. C. Roque, M. R. Aires-Barros - Magnetic separations in biotechnology, Biotechnol. Adv. 31 (2013) 1374-1385.

P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Zh. Wei, C. Huang, G. X. Xie, Zh. F. Liu - Use of iron oxide nanomaterials in wastewater treatment: A review, Sci. Total Environ. 424 (2012) 1–10.

Ambashta RD, Sillanpää M - Water purification using magnetic assistance: a review, J. Hazard. Mater. 180 (1-3) (2010) 38-49.

Lu A.H., Salabas E.L., Schuth F. - Magnetic nanoparticles: synthesis, protection, functiona-lization, and application, Angew. Chem. Int. Ed. 46 (2007) 1222–1244.

Wu W., He Q., Jiang C. - Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies, Nanoscale Res. Lett. 3 (2008) 397–415.

S. Kalia, S. Kango, A. Kumar, Y. Haldorai, B. Kumari, R. Kumar - Magnetic polymer nanocomposites for environmentaland biomedical applications, Colloid Polym. Sci. 292 (2014) 2025–2052.

Ngoan N.T., Lam T.D., Cuong N.D., Loc N.T., Cham T.B., Binh N.H., Duong T.B., Nam P.H., Dzung N.T., Thai Hoa T., Dien P.G. – Facile synthesis of multifunctional Ag/Fe3O4-CS nanocomposites for antibacterial and hyperthermic applications, Curr. Appl. Phys. 15 (2015) 1482-1487.

X.Q. Xu, H. Shen, J.R. Xu, M.Q. Xie, X.J. Li - The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate, Appl. Surf. Sci. 253 (2006) 2158–2164.

M.M. Lakouraj, F. Mojerlou, E.N. Zare - Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions, Carbohydr. Polym. 106 (2014) 34–41.

M. Szekalska, A. Puciłowska, E. Szymańska, P. Ciosek, and K. Winnicka - Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications, Int. J. Polym. Sci., Article ID 7697031 (2016), 17 pages.

S. Kondaveetia, D.R. Cornejob, D. Freitas, S. Petria - Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine, Colloids and Surfaces B: Biointerfaces, 138 (2016) 94–101.

G. Germanos, S. Youssef, M. Abboud, W. Farah, B. Lescop, S. Rioual - Diffusion and agglomeration of iron oxide nanoparticles in magnetic calcium alginate beads initiated by copper sorption, J. Environ. Chem. Eng. 5 (2017) 3727–3733.

V. Gopalakannan, N. Viswanathan - Synthesis of magnetic alginate hybrid beads for efficient chromium(VI) removal, Int. J. Biol. Macromol. 72 (2015) 862–867.

E. Feliziani, A. Lichter, J. L. Smilanick, A. Ippolito - Disinfecting agents for controlling fruit and vegetable diseases after harvest, Postharvest Biol. Technol. 122 (2016) 53–69.

C. Marambio–Jones, E.M.Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res. 12 (2010) 1531–1551.

Oyanedel-Craver V.A.,Smith J.A. - Sustainable colloidal-silver impregnated ceramic filter for point-of-use water treatment, Environ. Sci. Technol. 42 (3) (2008) 927-933.

Dankovich T.A., Gray D.G., 2011-Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment, Environ. Sci. Technol. 45 (5) 1992-1998.

Mthombeni N.H., Mpenyana-Monyatsi L., Onyango M.S., Momba Maggie N.B. - Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column, J. of Hazard. Mater. 217-218 (2012) 133-140.

Travan A., Pelillo C., Donati I., Marsich E., Benincasa M.,Scarpa T., et al. - Non-cytotoxic silver nanoparticle polysaccharide nanocomposites with antimicrobial activity, Biomacromolecules 10 (6) (2009) 1429-1435.

Minh X. Vu, Ha T. T. Le, Lan T. Pham, Nam H. Pham, Huong T. M. Le, LuT. Le, Dung T. Nguyen - Facile synthesis of magnetic nanoparticles from spent picking liquors in aqueous saturated solution of calcium hydroxide, Russian Journal of Chemistry and Chemical Technology, in press.

Grant G. T., Morris E. R., Rees D. A., Smith P. J. C., Thom D. - Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Letters 32 (1) (1973) 195–198.

DOI: Display counter: Abstract : 314 views. PDF : 152 views.


  • There are currently no refbacks.

budidaya tani

Index: Google Scholar; Crossref; VCGate; Asean Citation Index

Published by Vietnam Academy of Science and Technology